Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 202(4): 729-742, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37552361

RESUMO

Predators play a fundamental role in cycling nutrients through ecosystems, by altering the amount and compositions of waste products and uneaten prey parts available to decomposers. Different prey can vary in their elemental content and the deposition of elements in predator waste can vary depending on which elements are preferentially retained versus eliminated as waste products. We tested how feeding on different prey (caterpillars, cockroaches, crickets, and flies) affected the concentrations of 23 elements in excreta deposited by wolf spider across 2 seasons (spring versus fall). Spider excreta had lower concentrations of carbon and higher concentrations of many other elements (Al, B, Ba, K, Li, P, S, Si, and Sr) compared to prey remains and whole prey carcasses. In addition, elemental concentrations in unconsumed whole prey carcasses and prey remains varied between prey species, while spider excreta had the lowest variation among prey species. Finally, the concentrations of elements deposited differed between seasons, with wolf spiders excreting greater concentrations of Fe, Mg, Mn, Mo, S, and V in the fall. However, in the spring, spiders excreted higher concentrations of Al, B, Ba, Ca, Cd, Cu, K, P, Na, Si, Sr, and Zn. These results highlight that prey identity and environmental variation can determine the role that predators play in regulating the cycling of many elements. A better understanding of these convoluted nutritional interactions is critical to disentangle specific consumer-driven effects on ecosystem function.


Assuntos
Ecossistema , Aranhas , Animais , Comportamento Predatório/fisiologia , Aranhas/fisiologia , Nutrientes , Estações do Ano
2.
Ecol Evol ; 13(7): e10348, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37496760

RESUMO

Arthropod consumption provides amino acids to invertebrates and vertebrates alike, but not all amino acids in arthropods may be digestible as some are bound in the exoskeleton. Consumers may not be able to digest exoskeleton in significant amounts or avoid it entirely (e.g., extraoral digestion). Hence, measures that do not separate digestible amino acids from those in exoskeleton may not accurately represent the amino acids available to consumers. Additionally, arthropods are taxonomically diverse, and it remains unclear if taxonomic differences also reflect differences in amino acid availability. Thus, we tested: (1) if there were consistent differences in the content and balance of amino acids between the digestible tissue and exoskeleton of arthropods and (2) if arthropod Orders differ in amino acid content and balance. We measured the amino acid content (mg/100 mg dry mass) and balance (mg/100 mg protein) of whole bodies and exoskeleton of a variety of arthropods using acid hydrolysis. Overall, there was higher amino acid content in digestible tissue. There were also significant differences in the amino acid balance of proteins in digestible tissue and exoskeleton. Amino acid content and balance also varied among Orders; digestible tissues of Hemiptera contained more of some essential amino acids than other Orders. These results demonstrate that arthropod taxa vary in amino acid content, which could have implications for prey choice by insectivores. In addition, exoskeleton and digestible tissue content differ in arthropods, which means that whole body amino acid content of an arthropod is not necessarily a predictor of amino acid intake of a predator that feeds on that arthropod.

3.
J Insect Physiol ; 144: 104470, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36525989

RESUMO

Data on the protein content of arthropods can be useful for addressing a variety of ecological, behavioral, and physiological hypotheses. Yet, the most accurate method for measuring protein content (i.e., amino acid analysis) is expensive and the accuracy of less expensive measures of protein is unclear. We analyzed a diversity of arthropods to test for relationships between digestible protein content as measured by amino acid analysis and several common protein measures: crude protein, Bradford assay, BCA assay, and Lowry assay. In the full dataset, the closest relationship to the amino acid data was found for the Lowry assay and the average of the Bradford and Lowry assays. However, one species, Blattella germanica, appeared to be an outlier in some analyses. When the data were analyzed without B. germanica, the closest relationships to the amino acid data were found for the Lowry assay. Our results suggest that not all protein measures are equal in their ability to estimate amino acid content. Some arthropod species can also contain chemicals that interfere with the accuracy of protein assays. Given that it is unclear how often interfering compounds are found in invertebrates, it may be best to conduct multiple assays when analyzing the protein content of arthropods, especially the Bradford and Lowry assays.


Assuntos
Artrópodes , Animais , Proteínas/análise , Aminoácidos , Bioensaio
4.
Ecol Evol ; 12(8): e9150, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35919395

RESUMO

In nature, food is often variable in composition and availability. As a consequence, predators may need to seek non-prey food sources. Some predators are known to feed on nectar when food is limited. Nectar and other carbohydrate resources could also be beneficial when prey are more abundant if it helps predators balance protein-biased diets. We tested if an actively hunting predator, the jumping spider, Phidippus audax, benefited from liquid carbohydrates when prey were not limited. We also tested if the benefit of carbohydrates varied with the nutrient content of prey (i.e., from protein to lipid biased). Spiders were reared on one of six live prey, Drosophila melanogaster, treatments that ranged from high protein to high lipid. Half of the spiders were given access to a 20% sucrose solution. After 2 months, we measured spider mass, cephalothorax width, instar duration, percent body fat, survival, and estimated number of prey eaten. Spiders reared on high-protein diets with carbohydrates were larger and heavier than spiders on other treatments. Access to carbohydrates also increased percent body fat and survival across prey treatments. Our results suggest that carbohydrates may be a valuable component of spider diets, especially when prey have high protein and low lipid content as is commonly observed in prey in the field. Our results highlight the importance of diet balancing for predators, and that liquid carbohydrates can be an important nutrient to supplement a diet of prey rather than just being an energy supplement during periods of starvation.

5.
Ecol Evol ; 12(4): e8869, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35475174

RESUMO

Global climate change is causing increased climate extremes threatening biodiversity and altering ecosystems. Climate is comprised of many variables including air temperature, barometric pressure, solar radiation, wind, relative humidity, and precipitation that interact with each other. As movement connects various aspects of an animal's life, understanding how climate influences movement at a fine-temporal scale will be critical to the long-term conservation of species impacted by climate change. The sedentary nature of non-migratory species could increase some species risk of extirpation caused by climate change. We used Northern Bobwhite (Colinus virginianus; hereafter bobwhite) as a model to better understand the relationship between climate and the movement ecology of a non-migratory species at a fine-temporal scale. We collected movement data on bobwhite from across western Oklahoma during 2019-2020 and paired these data with meteorological data. We analyzed movement in three different ways (probability of movement, hourly distance moved, and sinuosity) using two calculated movement metrics: hourly movement (displacement between two consecutive fixes an hour apart) and sinuosity (a form of tortuosity that determines the amount of curvature of a random search path). We used generalized linear-mixed models to analyze probability of movement and hourly distance moved, and used linear-mixed models to analyze sinuosity. The interaction between air temperature and solar radiation affected probability of movement and hourly distance moved. Bobwhite movement increased as air temperature increased beyond 10°C during low solar radiation. During medium and high solar radiation, bobwhite moved farther as air temperature increased until 25-30°C when hourly distance moved plateaued. Bobwhite sinuosity increased as solar radiation increased. Our results show that specific climate variables alter the fine-scale movement of a non-migratory species. Understanding the link between climate and movement is important to determining how climate change may impact a species' space use and fitness now and in the future.

6.
Methods Ecol Evol ; 12(4): 593-601, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34858566

RESUMO

Macronutrients, comprising carbohydrates, proteins and lipids, underpin many ecological processes, but their quantification in ecological studies is often inaccurate and laborious, requiring large investments of time and bulk samples, which make individual-level studies impossible. This study presents Macronutrient Extraction and Determination from Invertebrates (MEDI), a protocol for the direct, rapid and relatively low-cost determination of macronutrient content from single small macroinvertebrates.Macronutrients were extracted by a sequential process of soaking in 1:12 chloroform:methanol solution to remove lipid and then solubilising tissue in 0.1 M NaOH. Proteins, carbohydrates and lipids were determined by colorimetric assays from the same individual specimens.The limits of detection of MEDI with the equipment and conditions used were 0.067, 0.065 and 0.006 mg/ml for proteins, carbohydrates and lipids respectively. Adjusting the volume of reagents used for extraction and determination can broaden the range of concentrations that can be detected. MEDI successfully identified taxonomic differences in macronutrient content between five insect species.Macronutrient Extraction and Determination from Invertebrates can directly and rapidly determine macronutrient content in tiny (dry mass ~3 mg) and much larger individual invertebrates. Using MEDI, the total macronutrient content of over 50 macroinvertebrates can be determined within around 3 days of collection at a cost of ~$1.35 per sample.

7.
Sci Rep ; 11(1): 8496, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875743

RESUMO

Spiders were recently shown to be adversely affected by field-realistic concentrations of a broad scale of neonicotinoid insecticides. Among the reported effects of neonicotinoids on invertebrates were declines in lipid biosynthesis and upregulation of ß-oxidation, while vertebrate models suggest increased adipogenesis following treatment with neonicotinoids. Therefore, we hypothesized that there exists synergy between the effects of diet and concurrent exposure to field-realistic concentrations of neonicotinoid insecticides. To address this hypothesis, we fed first instars of the large wolf spider Hogna antelucana with two types of diets and exposed them to field-realistic concentrations of three formulations of neonicotinoids (thiamethoxam, thiacloprid and acetamiprid). We then measured the growth of the tested spiders; the lipid and protein content of their bodies; and their behavior, including ballooning, rappelling, and locomotor parameters. The two tested diets consisted of casein-treated and sucrose-treated Drosophila melanogaster. The dietary treatments affected the lipid and protein content of the spiders, their body weight and carapace length but did not affect any of the measured behavioral parameters. Surprisingly, we did not find any effects of acute exposure to neonicotinoid insecticides on the lipid or protein reserves of spiders. Exposure to neonicotinoids altered the behavior of the spiders as reported previously in other spider species; however, these effects were not affected by dietary treatments. Overall, the dietary treatments did not have any major synergy with acute exposure to field-realistic concentrations of neonicotinoid insecticides.


Assuntos
Drosophila melanogaster/fisiologia , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Estado Nutricional , Aranhas/fisiologia , Testes de Toxicidade/métodos , Animais , Proteínas de Artrópodes/metabolismo , Peso Corporal , Drosophila melanogaster/efeitos dos fármacos , Lipídeos/análise , Aranhas/efeitos dos fármacos
8.
Ecol Evol ; 11(1): 427-442, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437440

RESUMO

Arthropods are abundant and diverse animals in many terrestrial food webs. In western Oklahoma, some shrublands are interspersed with discrete, dense thickets of tall, woody vegetation, known as mottes. Some of these shrublands are managed with prescribed burning. The goal of this study was to examine whether prescribed burning interacted with habitat type (i.e., shrubland versus mottes) to affect ground-dwelling arthropod communities. Arthropods were collected in pitfall traps at four sampling locations in relation to mottes; in the center of mottes, and three plot location in shrublands; 1 m, 15 m, and 50 m away from the edge of the motte. There were three treatment levels for burning: one year postburn (burned in dormant months of 2017), two years postburn (burned in dormant months of 2016), and unburned (burned in dormant season of 2014 and prior). There were no significant interactions between prescribed burning and habitat type. Mottes had a different community of arthropods compared with the surrounding shrubland. Mottes also had lower overall abundance, but a higher diversity of arthropods. In terms of fires, arthropod communities one year after burning were different from those two or more years after burning. There was no effect of burning on overall arthropod abundance, but plots that were one year since burning had significantly lower diversity compared with plots that were two or more years postburn. The results of this study suggest that both fire and mottes can independently facilitate heterogeneity in arthropod communities, but they do not appear to interact with one another.

9.
Ecol Evol ; 11(24): 17774-17785, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003638

RESUMO

Insectivores gain macronutrients and elements from consuming arthropod prey, but must also deal with indigestible components (i.e., exoskeleton) of prey. For example, avian chicks (e.g., northern bobwhites; Colinus virginianus) have limited gut space, and ingesting prey with relatively higher proportions of indigestible components may impact assimilation efficiency, growth, and survival. The ability of insectivores to choose higher quality prey would depend on prey taxa varying consistently in nutritional content. We tested whether there were consistent differences among taxonomic orders of arthropod prey in their macronutrient (protein and lipid), elemental (C and N), and exoskeleton content. We used northern bobwhite chicks as our focal insectivore and focused on their potential prey as a case study. We also tested the influence of indigestible exoskeleton on the measurement of macronutrient content and the ability of elemental content to predict macronutrients. We found large and consistent variation in macronutrient and elemental content between arthropod orders. Some orders had consistently high protein content and low exoskeleton content (i.e., Araneae) and are likely higher quality prey for insectivores. Abundant orders common in the diets of insectivores, like Hymenoptera and Coleoptera, had high exoskeleton content and low protein content. We also found support for the ability of elements to predict macronutrients and found that metabolizable (i.e., exoskeleton removed) elemental content better predicted macronutrient content. A better understanding of arthropod nutrient content is critical for elucidating the role of spatial and temporal variation in prey communities in shaping the growth and survival of insectivores.

10.
Ecol Evol ; 10(18): 9696-9706, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005340

RESUMO

Temperature dependency of consumer-resource interactions is fundamentally important for understanding and predicting the responses of food webs to climate change. Previous studies have shown temperature-driven shifts in herbivore consumption rates and resource preference, but these effects remain poorly understood for predatory arthropods. Here, we investigate how predator killing rates, prey mass consumption, and macronutrient intake respond to increased temperatures using a laboratory and a field reciprocal transplant experiment. Ectothermic predators, wolf spiders (Pardosa sp.), in the lab experiment, were exposed to increased temperatures and different prey macronutrient content (high lipid/low protein and low lipid/high protein) to assess changes in their killing rates and nutritional demands. Additionally, we investigate prey mass and lipid consumption by spiders under contrasting temperatures, along an elevation gradient. We used a field reciprocal transplant experiment between low (420 masl; 26°C) and high (2,100 masl; 15°C) elevations in the Ecuadorian Andes, using wild populations of two common orb-weaver spider species (Leucauge sp. and Cyclosa sp.) present along the elevation gradient. We found that killing rates of wolf spiders increased with warmer temperatures but were not significantly affected by prey macronutrient content, although spiders consumed significantly more lipids from lipid-rich prey. The field reciprocal transplant experiment showed no consistent predator responses to changes in temperature along the elevational gradient. Transplanting Cyclosa sp. spiders to low- or high-elevation sites did not affect their prey mass or lipid consumption rate, whereas Leucauge sp. individuals increased prey mass consumption when transplanted from the high to the low warm elevation. Our findings show that increases in temperature intensify predator killing rates, prey consumption, and lipid intake, but the responses to temperature vary between species, which may be a result of species-specific differences in their hunting behavior and sensitivity to temperature.

11.
J Insect Physiol ; 116: 25-31, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31009622

RESUMO

Predators feed on a diversity of prey that can vary widely in nutrient content. While prey nutrient content is known to have important consequences for life history traits, less is known about how it affects physiology and behavior. The purpose of this study was to test how diet affected the physiology and behavior of the wolf spider Hogna carolinensis. We hypothesized that higher protein intake would result in a lower metabolic rate due to less energy intake. Further, we also expected the high protein group to exhibit increased activity levels and aggression in an attempt to increase energy intake. Spiders were maintained on three different treatment diets in order to simulate prey with differing macronutrient composition: high protein, intermediate, and high lipid. Spider respiration was measured to quantify the baseline metabolic rate (SMR), digestive metabolic rate (SDA), and active metabolic rate (AMR). We found no significant effect of diet on metabolic rates. However, the SDA coefficient (i.e. digestive cost relative to prey content) was higher in the high protein group, meaning that this group metabolized a greater portion of their prey during digestion and had a lower net energy intake from prey. In our behavioral assays, spiders in the high protein group were significantly more active and attacked prey more quickly in their first trial. Our results demonstrate that diet had relatively little effect on predator metabolism but more of an effect on behavior. These findings suggest that diet regulation should be analyzed by studying multiple responses together, including metabolism and behavior, to gain a more comprehensive understanding of the effects of diet on organism performance and fitness.


Assuntos
Nutrientes/metabolismo , Comportamento Predatório , Aranhas/fisiologia , Animais , Dieta , Ingestão de Energia , Feminino , Aranhas/metabolismo
12.
Pest Manag Sci ; 75(10): 2627-2633, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30706632

RESUMO

BACKGROUND: Recent research on multiple invasive ant species has revealed the importance of carbohydrates for achieving high activity levels and outcompeting native ants. However, comparatively little is known about the role of diet and macronutrient preferences for uptake of insecticidal baits used to control invasive ants. We tested whether diet affected yellow crazy ant (Anoplolepis gracilipes Fr Smith) survival and behavior, and whether bait preference would be complementary to past diet. RESULTS: We found that colonies fed only crickets for 28 days had fewer live workers and queens, and less brood per live queen than colonies fed crickets + honeydew but did not differ significantly from colonies fed only honeydew. Colonies that had been fed only crickets were more active (as assessed by interaction with a novel object), retrieved 16-17 times more bait per worker overall, and consumed more of the six bait types than cricket + honeydew and honeydew-only fed colonies. However, prior diet did not affect bait choice. The two highest sugar bait formulations combined accounted for most of the bait consumed across all treatments (cricket-only 74.8% ± 28.1; cricket + honeydew 69.2% ± 12.4; honeydew-only 62.5% ± 30.4). CONCLUSION: Yellow crazy ant colonies fare better without protein than without carbohydrates. Yellow crazy ants ate the most bait when fed only crickets but did not choose baits complementary to their previous diet. Baits in a sugar-rich carrier may be most effective for the control of yellow crazy ants, regardless of the relative availability of macronutrients. © 2019 Society of Chemical Industry.


Assuntos
Formigas , Dieta , Controle de Insetos , Inseticidas , Animais , Formigas/fisiologia , Preferências Alimentares/fisiologia , Espécies Introduzidas
13.
J Insect Physiol ; 114: 10-14, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30742814

RESUMO

Temperature strongly influences the physiology and behavior of ectotherms. Persistence within different environments can be limited by thermal tolerances. These thermal tolerances can also shift through life stages and differ between sexes. The critical thermal maximum (CTMax) defines the temperature at which animals experience unorganized locomotion or spasms. In this study, we tested if CTMax varied between a native and an invasive widow species. We separately tested if CTMax varied by widow life stage and sex. We predicted that the invasive species would have higher CTMax due to originally inhabiting warmer climates. We also predicted that juveniles and male widows would possess higher CTMax because they are more mobile and could experience a greater scope of thermal extremes throughout landscapes. We did not find a difference in CTMax between the species, but we did find differences across development stages. Temperature of spasms and death decreased with developmental stages, which corresponds with previous studies in spiders. Future studies of ontogenic and interspecific comparisons will be crucial for more broadly understanding how upper tolerances shapes species persistence in changing climates or ability to invade new habitats.


Assuntos
Viúva Negra/fisiologia , Espécies Introduzidas , Termotolerância , Animais , Feminino , Masculino , Fatores Sexuais , Especificidade da Espécie
14.
PLoS One ; 14(1): e0210296, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30629650

RESUMO

Wolf spiders are abundant and voracious predators at the soil-plant interface in cotton crops. Among other prey, they attack late-instar larvae of the cotton bollworm Helicoverpa spp., an economically important pest. Consequently, wolf spiders in transgenic Bt cotton could provide significant biological control of Bt-resistant Helicoverpa larvae that descend to the soil to pupate. The predator-prey interactions between wolf spiders and Helicoverpa could, however, be constrained by the presence of alternative prey and intraguild predators. This study used laboratory enclosures to analyse the effect of alternative prey on predatory selection of the wolf spider Tasmanicosa leuckartii Thorell. The prey included another wolf spider Hogna crispipes Koch (potential intraguild predator), the ground cricket Teleogryllus commodus Walker (minor pest), and Helicoverpa armigera larvae (major pest). We tested if encounter rates, prey vulnerability, and prey nutritional content influenced the likelihood that a prey was attacked. In three-way food webs, Tasmanicosa encountered and attacked Teleogryllus and Helicoverpa in similar frequencies. However, in the presence of a competing intraguild predator and potential prey (Hogna) in a four-way food web, Tasmanicosa did not always attack Teleogryllus at first encounter, but still attacked Helicoverpa at each encounter. Helicoverpa (protein-poor) and Hogna (protein-rich) were consumed by Tasmanicosa in similar proportions, suggesting that Tasmanicosa might benefit from nutrient balance as an outcome of diverse prey in this food web. As Teleogryllus (protein rich) escapes quicker than Helicoverpa and Hogna, Hogna may be an easier protein-rich option than Teleogryllus. Field surveys showed that while Teleogryllus was the most common prey, wolf spiders feed on diverse insect taxa, as well as other spiders. That Tasmanicosa readily attacked Helicoverpa larvae in the presence of alternative prey is an encouraging result that supports the potential of Tasmanicosa predation to assist in the control of Bt-resistant Helicoverpa larvae and thereby inhibit the proliferation and spread of resistance.


Assuntos
Mariposas , Valor Nutritivo , Comportamento Predatório , Aranhas/fisiologia , Animais , Agentes de Controle Biológico , Cadeia Alimentar , Gossypium , Resistência a Inseticidas , Larva , Plantas Geneticamente Modificadas
15.
Oecologia ; 190(1): 1-9, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30478619

RESUMO

Predators often feed on a wide range of prey that can vary in behavior, morphology, and physiology. The net benefits that predators gain from prey are likely related to both prey nutrient content and prey morphology or defenses. For invertebrates, the exoskeleton is a morphological trait that varies widely among species and during ontogeny and could affect nutrient extraction by predators. The goal of this study was to determine how prey exoskeleton content affected predator nutrient intake, assimilation, and excretion by comparing spiders feeding on either larval or adult mealworms of similar size. We found that the proportion of prey energy invested in digestion was greatest in spiders consuming adult mealworm beetles which had higher amounts of exoskeleton than larvae. Further, spiders extracted a greater proportion of elements, macronutrients, and energy from the larval mealworms, which had lower amounts of exoskeleton. Interestingly, total nitrogen content of prey was not a predictor of nitrogen assimilation as spiders assimilated more nitrogen from the larval mealworms, which had lower total nitrogen content. While adult beetles had higher total nitrogen content, their discarded remains of prey had large amounts of nitrogen that was nutritionally unavailable for spiders (i.e., exoskeleton). These results suggest that prey exoskeleton can affect assimilation efficiency by predators, and that a combination of macronutrient and elemental analyses may be needed to examine the quality of prey for predators and the potential consequences of predation for nutrient flows (e.g., consumer assimilation, egestion, and excretion) in ecosystems.


Assuntos
Viúva Negra , Besouros , Tenebrio , Animais , Ecossistema , Feminino , Larva , Comportamento Predatório
16.
J Insect Physiol ; 100: 128-132, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28614727

RESUMO

Sexual cannibalism has long been hypothesized to be a foraging decision in which females consume males for the nutrients in their bodies. While few studies have documented fecundity benefits of sexual cannibalism, several recent studies have documented benefits of cannibalism to egg hatching success or offspring survival. We tested if small supplements of dietary essential nutrients fed to female spiders, Argiope bruennichi, would result in increases in offspring survival similar to those seen following sexual cannibalism. All female spiders were prevented from cannibalizing their mates and subsequently fed either: a dead male spider, or a similarly-sized dead fly with one of four nutrient supplements (water control, dietary essential fatty acids, dietary essential amino acids, or nonessential amino and fatty acids). Females that consumed a small supplement of dietary essential amino acids produced offspring that survived simulated overwintering conditions significantly longer than offspring of other treatments. While a previous study found a significant effect of cannibalism on offspring survival using field-collected males as prey, the current study, which used lab-reared males as prey, found no effect of sexual cannibalism on offspring survival. Hence, our results suggest that dietary essential amino acids, which may be sequestered by males from their diet, could be valuable supplements that increase the success of the offspring of cannibalistic females. Further work is needed to determine the source and identity of these dietary essential amino acids and if other essential nutrients (e.g., trace elements, vitamins, etc.) may also be limiting in female diets and affect offspring success.


Assuntos
Longevidade , Micronutrientes/metabolismo , Aranhas/fisiologia , Animais , Comportamento Alimentar , Feminino , Reprodução
17.
J Anim Ecol ; 85(6): 1427-1430, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27778382

RESUMO

Global warming and predation risk can have important impacts on animal physiology and life histories that can have consequences for ecosystem function. Zhang et al. () recently tested the separate and interactive effects of warming and predation risk on the body composition of Daphnia magna. By measuring both the elemental and biochemical composition of individuals, they showed that D. magna body elemental composition responded opposite to theoretical predictions and previous studies but that these changes were explained by adaptive life-history shifts in allocation to protein in eggs versus body lipid reserves. Photograph by Joachim Mergeay. Zhang, C., Jansen, M., De Meester, L. & Stoks, R. (2016) Energy storage and fecundity explain deviations from ecological stoichiometry predictions under global warming and size-selective predation. Journal of Animal Ecology 85, 1431-1441. Understanding the mechanisms through which energy and nutrients flow through ecosystems is critical to predicting and mitigating the consequences of climate change and other ecological disturbances. Ecological stoichiometry and nutritional geometry, using data on elements and macromolecules, respectively, have independently made major contributions towards this goal. Zhang et al. () provide data demonstrating that these two major frameworks can provide complementary insight into the consequences of global warming and predation risk for the physiology and life-history traits of a key aquatic herbivore, Daphnia magna. This study should catalyse further work to unite these two parallel and complementary frameworks.


Assuntos
Mudança Climática , Óvulo , Animais , Ecossistema , Aquecimento Global , Comportamento Predatório
18.
PLoS One ; 10(7): e0133868, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26197456

RESUMO

Individuals vary within a species in many ecologically important ways, but the causes and consequences of such variation are often poorly understood. Foraging behavior is among the most profitable and risky activities in which organisms engage and is expected to be under strong selection. Among social insects there is evidence that within-colony variation in traits such as foraging behavior can increase colony fitness, but variation between colonies and the potential consequences of such variation are poorly documented. In this study, we tested natural populations of the red imported fire ant, Solenopsis invicta, for the existence of colony and regional variation in foraging behavior and tested the persistence of this variation over time and across foraging habitats. We also reared single-lineage colonies in standardized environments to explore the contribution of colony lineage. Fire ants from natural populations exhibited significant and persistent colony and regional-level variation in foraging behaviors such as extra-nest activity, exploration, and discovery of and recruitment to resources. Moreover, colony-level variation in extra-nest activity was significantly correlated with colony growth, suggesting that this variation has fitness consequences. Lineage of the colony had a significant effect on extra-nest activity and exploratory activity and explained approximately half of the variation observed in foraging behaviors, suggesting a heritable component to colony-level variation in behavior.


Assuntos
Formigas/fisiologia , Comportamento Apetitivo , Comportamento Alimentar , Animais , Comportamento Animal , Ecologia , Ecossistema , Gryllidae , Mississippi , Especificidade da Espécie , Texas
19.
PLoS One ; 10(7): e0132440, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26196147

RESUMO

Resource availability can determine an organism's investment strategies for growth and reproduction. When nutrients are limited, there are potential tradeoffs between investing into offspring number versus individual offspring size. In social insects, colony investment in offspring size and number may shift in response to colony needs and the availability of food resources. We experimentally manipulated the diet of a polymorphic ant species (Solenopsis invicta) to test how access to the carbohydrate and amino acid components of nectar resources affect colony investment in worker number, body size, size distributions, and individual percent fat mass. We reared field-collected colonies on one of four macronutrient treatment supplements: water, amino acids, carbohydrates, and amino acid and carbohydrates. Having access to carbohydrates nearly doubled colony biomass after 60 days. This increase in biomass resulted from an increase in worker number and mean worker size. Access to carbohydrates also altered worker body size distributions. Finally, we found a negative relationship between worker number and size, suggesting a tradeoff in colony investment strategies. This tradeoff was more pronounced for colonies without access to carbohydrate resources. The monopolization of plant-based resources has been implicated in the ecological success of ants. Our results shed light on a possible mechanism for this success, and also have implications for the success of introduced species. In addition to increases in colony size, our results suggest that having access to plant-based carbohydrates can also result in larger workers that may have better individual fighting ability, and that can withstand greater temperature fluctuations and periods of food deprivation.


Assuntos
Formigas/fisiologia , Carboidratos da Dieta/metabolismo , Aminoácidos/metabolismo , Animais , Formigas/anatomia & histologia , Formigas/crescimento & desenvolvimento , Comportamento Animal , Tamanho Corporal , Densidade Demográfica , Reprodução
20.
Annu Rev Entomol ; 60: 293-311, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25341097

RESUMO

In this review we highlight recent advances in four areas in which nutrition shapes the relationships between organisms: between plants and herbivores, between hosts and their microbiota, between individuals within groups and societies, and between species within food webs. We demonstrate that taking an explicitly multidimensional view of nutrition and employing the logic of the geometric framework for nutrition provide novel insights and offer a means of integration across different levels of organization, from individuals to ecosystems.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Artrópodes/fisiologia , Animais , Artrópodes/microbiologia , Ecossistema , Cadeia Alimentar , Herbivoria , Microbiota , Plantas , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...